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Moment-theory methods are described for calculations of the high-energy electron impact- 
excitation and -ionization cross sections and closely related Van Hove correlation functions of 
atomic and molecular targets. The conventional Bethe-Born expressions are evaluated 
employing moment-theory techniques that avoid explicit construction of discrete and con- 
tinuum target eigenspectra. Appropriately defined generalized-oscillator-strength spectral 
moments and corresponding polynomial recurrence coefftcients are seen to furnish necessary 
and suffkient information for Born calculations. The convergence of partial-wave variational 
calculations of such moments and coeffkients is investigated for hydrogenic targets using 
complete basis sets of square-integrable functions. Calculated spectral moments and 
recurrence coefficients, and previously devised Stieltjes-Tschebyscheff techniques, are 
employed in constructing Gaussian and Radau quadratures that provide convergent approx- 
imations to the corresponding Bethe surface of discrete and continuum generalized oscillator 
strengths, and to the associated cross sections and correlation functions. Square-integrable 
principal pseudostates obtained from variational calculations of multipole spectral moments 
are shown to provide correctly normalized convergent approximations to the discrete and 
continuum transition densities appropriate for the target considered, clarifying the underlying 
basis of reliability and numerical stability of the moment-theory approach to Bethe-Born cross 
sections. The development should prove particularly useful in investigations of the Bethe 
surfaces, related scattering cross sections, and Van Hove correlation functions of molecular 
targets. 

I. INTRODUCTION 

The Bethe-Born theory of high-energy inelastic charged-particle scattering has long 
provided a useful first approximation to the impact-excitation and -ionization cross 
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sections of atomic and molecular targets [l-3]. In this approach, the complete set of 
discrete and continuum target eigenstates are formally required, making precise 
evaluations of scattering cross sections cumbersome, and motivating the introduction 
of computationally more tractable approximations in lieu of the correct Bethe-Born 
results. Certain aspects of these difficulties, and of the ranges of validity of the 
computational approximations introduced, are described in detail in the immediately 
preceding publication [4]. It is indicated there that appropriately defined spectral 
moments provide generalized quadratures for the Bethe-Born development, 
suggesting an alternative approach to the evaluation of high-energy inelastic 
scattering cross sections that explicitly avoids construction of target eigenstates. In 
view of the continuing interest in studies of molecular impact-excitation and - 
ionization cross sections, in which cases construction of target continuum eigen- 
functions is particularly troublesome, it would seem helpful to investigate further a 
moment-theory approach to Bethe-Born cross sections. 

In the present work, Stieltjes and Tschebyscheff moment-theory approaches, 
previously described for constructing dipole excitation spectra in atoms and 
molecules [5], and in nuclei [6], are extended to the generalized oscillator-strength 
distributions, scattering cross sections, and related Van Hove correlation functions of 
electron impact-excitation spectra. As in the dipole case [7], the correct discrete and 
continuum eigenstates are avoided by employing basis sets of square-integrable 
functions in Ritz variational calculations of spectral sums, or moments, of the 
generalized oscillator-strength distribution. Recent extensions of the Tschebyscheff- 
Stieltjes-Markoff moment theory provide convergent approximations to both the 
discrete and continuum portions of Bethe surfaces, to corresponding scattering cross 
sections, and to associated Van Hove correlation functions from the calculated 
moments [8, 91. In order to achieve numerical stability, recurrence coefficients for 
polynomials orthogonal with respect to the correct generalized oscillator-strength 
distribution are employed in computational applications [8-lo]. Since the spectral 
sums and recurrence coefficients in the present case are functions of the moment 
transferred to the target, or of the scattering angle, detailed investigations of their 
convergence are in order. Atomic hydrogen provides a useful illustrative example of 
the computations required to determine convergent spectral moments and recurrence 
coefficients, and of the overall Stieltjes-Tschebyscheff approach for inelastic electron- 
scattering calculations. Molecular and more complex atomic targets are the subjects 
of subsequent theoretical investigations. 

Convergent approximations to the correct Beth surface, scattering cross sections, 
and correlation functions in atomic hydrogen are obtained employing both conven- 
tional power moments and appropriately defined modified spectral moments [ 1 l-131. 
As few as live spectral moments are found to provide results in qualitative accord 
with the correct Bethe surface, and convergence to the correct result is obtained upon 
introduction of sufficient numbers of moments or equivalent recurrence coefficients. 
Since the Bethe surface itself is found to be rapidly convergent in the moment-theory 
development, corresponding convergence of the inelastic scattering cross sections is 
also assured. It is emphasized that the generalized Gaussian and Radau quadratures 
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obained from spectral moments are optimal for the evaluation of corresponding 
spectral integral properties. Because the Van Hove autocorrelation functions for 
target atom electrons are found to be particularly sensitive to the moment-theory 
procedures, detailed evaluations of these are also reported. Finally, square-integrable 
principal pseudostates obtained from Hilbert-space variational calculations and the 
Stieltjes-Tschebyscheff development are shown to provide convergent approximations 
to the appropriate discrete and continuum transition densities, and to clarify the 
underlying basis of reliability and numerical stability of the L* moment approach 
[ 14-161. The Stieltjes and Tschebyscheff methods are consequently seen to furnish all 
the scattering and excitation information customarily obtained from explicit 
construction of discrete and continuum target eigenstates, and, consequently, should 
prove particularly useful in subsequent investigations of the Bethe surfaces, related 
scattering cross sections, and Van Hove correlation function of complex atoms and 
molecules. 

In Section II, the invariant momentum-transfer (or scattering angle dependent) 
spectral moments are defined and techniques for their evaluation are described. 
Aspects of the Tschebyscheff-Stieltjes-Markoff moment theory and the Stieltjes and 
Tschebyscheff derivatives are described briefly in Section III, and detailed 
computational results are presented and discussed in Section IV. Some general and 
concluding remarks are made in Section V. 

II. SPECTRAL MOMENTS 

The invariant spectral moments of the generalized oscillator-strength distribution of 
an atomic or molecular target are conveniently written in the form [ 12, 131 

S(q, i) = Jrn Ei df(&, q). 
61 

(1) 

Here, E, is the first transition energy, the index i is restricted to integer values for 
which convergence is assured, and d’(s, q) is the generalized oscillator strength for 
target transition into the excitation energy interval E to E + dc upon transfer of 
momentum q from the scattering projectile [4]. The generalized oscillator-strength 
distribution can be written in the form 

f(~, q) = lc; df(E’, q) = j; [ nz, &t(q) ‘%n - E’) + g(&‘, q)] dE’, (2) 

wheref,(q) and g(s, q) are the discrete and continuum strengths, respectively, and E, 
are the corresponding discrete excitation energies. The term in square brackets in 
Eq. (2) defines the generalized oscillator-strength density, which is seen to include 
delta-function contributions from discrete transitions and a smooth portion associated 
with the impact-ionization continuum. Since df(c, q) > 0 for ground state targets, 
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f(e, q) is a nondecreasing function of E for fixed q or scattering angle 8. Such 
distributions are characterized uniquely by their power moments. A sufficient number 
of moments, or closely related polynomial recurrence coefficients described below 
[8], provides the necessary and sufficient information for construction of accurate 
approximations to the distributionf(a, q) and to the corresponding density (5-161. 

To demonstrate that the moments of Eq. (1) can be computed without reference to 
the eigenstates required in construction of f*(q) and g(s, q), note that enforcing 
closure in the usual way gives [4] 

f%h i> = 2% I (l/q) exp(--iq + rWo - E,)‘+ ‘(l/q) exp(iq e r I $o>. (3) 

Here, H,, E,, and d,, are the target Hamiltonian, ground-state energy, and wave 
function, respectively, (H, - E,)‘+ ’ is defined in the subspace orthogonal to &,, and a 
one-electron target is considered for notational convenience. In the cases i = 2, 1, 0, 
and -1, Eq. (3) provides sum rules in the form of expectation values over (6, [ 171. In 
the cases i = -k, k > 2, the sums of Eq. (3) can be written in the forms [ 11 - 131 

WY -k) = 2(&l (l/q) exp(iq . r) l$o)y (4) 

where the so-called Cauchy functions 19, are given by [ 1 l-131 

8, = (Ho - Eo)l-k(llq) ev(iq . r> #o, k = 2, 3, 4 ,..., (5) 

with (H, - E,)‘-k detined in the subspace of the target Hamiltonian H, orthogonal 
to go, as in Eq. (3). From Eqs. (3) and (5), 

(0, ) 0,) = (l/2) s(q, 1 - k - l>, (6) 

indicating that the 6, are square-integrable functions for all q when the moments 
S(q, 1 - 2k) are finite, suggesting that they can be computed in a complete L* basis 
set without explicit reference to the target spectral functions. 

The 8, of Eq. (5) are conveniently obtained from the equations [ 181 

(Ho - Eo) 0, = U/q) exp(iq . r> do y 

(f&,-&d&=&-,9 k> 3, 

(74 

(7b) 

where the particular solutions required are those orthogonal to &,. Although the 
functions 8, can perhaps be obtained in closed form for simple model systems, a 
more general strategy is required for complex atoms and molecules. In the case of 
atomic systems, a conventional partial-wave expansion is conveniently employed 
[12, 131. 

Introduction of a partial-wave expansion in the development of Eqs. (l)--(7) gives 
corresponding expressions for the spectral moments 

S(q, i) = 2 S”‘(q, i), 
I=0 

@a> 



SCATTERING CROSS SECTIONS, II 71 

generalized oscillator-strength distribution 

f@, s> = : f(“(~9 41, 
I=0 

and Cauchy functions 

8, = 5 elf). 
I=0 

WI 

(8~) 

These partial-wave Cauchy functions k$‘) and moments S”‘(q, i) can be constructed 
employing conventional computational methods [ 18, 191. It is convenient to perform 
the necessary variational calculations using square-integrable pseudostates that 
satisfy 

(&” ( Ho - E, ) J-j”) = dijty’, 

(qq” 1 Jy’) = 6,, i,j= 1, 2 ,..., N, 

Pa> 

Pb) 

for the Ith partial wave. Approximations to the Cauchy functions 0:) and spectral 
sums S”‘(q, i) are obtained from the functions of Eqs. (9) in the forms 

where 

j=j’)“‘(q) = 2$‘) I($) 1 (l/q) exp(iq . r) ( do)12 (11) 

is the pseudostrength associated with the pseudotransition frequency &y”. In view of 
Eq. (6), $“(q, i) will converge to S”‘(q, i) in the limit N -+ 00, provided the L2 basis 
employed in calculating the &‘) of Eqs. (9) spans both discrete and continuum 
portions of the I-wave spectrum of Ho. Convergence of the partial-wave expansion of 
Eqs. (8) will usually be limited to sufficiently small values of q, since a finite number 
of waves must generally be employed. It is important to recognize in this connection, 
however, that the large-q limits of the moments, distributions, and Cauchy functions 
of Eqs. (8) are controlled in large measure by the binary-encounter approximation 
[4], since the corresponding Bethe surface is dominated by the Bethe ridge for the 
atom or molecule studied [l-3]. Consequently, the variational development of 
Eqs. (8)-(11) should be regarded as appropriate for those portions of the Bethe 
surface in which the distinctive atomic or molecular nature of the excitation spectrum 
dominates, generally corresponding to small and intermediate q and E values [ 1 - 31. 
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It is useful to also consider so-called modified moments of the generalized 
oscillator-strength distribution, defined according to [20] 

(12) 

where the ~~(6) are polynomials in the variable E orthogonal with respect to an 
appropriate reference density [lo]. Since the polynomials PJE) can be chosen to 
evenly weight the entire spectrum for all i, the moments of Eq. (12) provide a useful 
alternative to the power moments of Eq. (l), which predominantly weight the low- 
frequency region of the spectrum as i --) --co. Consequently, for spectral moments of 
a specified accuracy, the moment problem resulting from the use of polynomial 
moments is generally more stable than that resulting from power moments [ 211. In 
order to utilize this greater stability however, it is generally necessary that the 
moments of Eq. (12) be computed without recourse to the power moments of Eq. (1) 
since construction of the former directly from the latter can lead to a compensating 
loss of accuracy [22]. 

III. STIELTJES-TSCHEBYSCHEFF MOMENT-THEORY TECHNIQUES 

When sufficiently accurate approximations to spectral sums (Eq. (1)) or related 
polynomial moments (Eq. (12)) are available, previously described Stieltjes and 
Tschebyscheff techniques [5-91 can be employed to construct the appropriate Bethe 
surface, associated cross sections, and Van Hove correlation functions 141. These 
procedures entail determinations of generalized Gaussian and Radau quadratures 
from the given moments [S], which quadratures are then employed in construction of 
Stieltjes and Tschebyscheff approximations, respectively, to the corresponding 
distribution and density. Since the development has been described in considerable 
detail previously, only those aspects of the theory specifically required for clarity are 
presented here. 

The &h-order generalized Gaussian quadratures (Qq, n),J;:(q, n); i = 1, n) required 
in the Stieltjes development satisfy the equations [8,9] 

i=l 

k = 0, l,..., 2n - 1, (13) 

where the S(q, -k) are the defining moments of Eq. (1). Equations (13) are written 
arbitrarily for the indicated range (k = O,..., 2n - 1) of spectral moments, although 
any 2n sequential values can be employed in the development. Note in this 
connection that the 8, of Eqs. (4~(7) are well defined for any k giving a convergent 
moment. Explicit expressions for the Stieltjes approximations to the distribution and 
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density are obtained from the quadratures of Eq. (13) in the histogram forms [ 14-16) 

f%, 4) = f: A(% n), 
i=l 

W) 

g(“)(E9 4) = f [&+ 1(4, n, +&fqY n)ll[Ejt I(49 n> - &j(qT n>lY 
Ej(qv n, < & < &j+ I(S9 n)* (14b) 

The histogram of Eq. (14b) corresponds to a finite-difference approximation to the 
correct density constructed from the distribution histogram of Eq. (14a) [ 14-161. 
Both distribution and density histograms converge to the correct corresponding 
results in the limit n + co [9]. 

The nth-order Radau quadratures [ci(q, E, n),&(q, E, n); i = 0, n] of interest here are 
given by the equations [8, 91 

s(qT -k) = E-kf(qY CT n, + 2 &i(q 9 6 qk”gq, 6 n>, k = O,..., 2n, (15) 
i=l 

wheref,(q, E, n), the n values of ei(q, E, n), and the n values ofJ(q, E, n) are functions 
of a prespecified point E (- co(q, E, n)), as indicated. Since E can be prespecified, the 
quadratures of Eq. (15) provide an approximation to the distribution at any point in 
the spectrum in the form [23-251 

where the sum in i is over the m values of &(q, E, n) associated with points 
Ei(q, E, n) < E. A corresponding approximation to the density g(s, q) is obtained from 
the derivative of Eq. (16a) in the form [9] 

Equation (16b) provides a Tschebyscheff approximation to g(&, q) which is generally 
smooth in the continuum portion of the spectrum but gives delta-function-like 
behavior at the appropriate discrete transition frequencies [9,23-251. When the 
prespecified value E is set at a generalized Gaussian quadrature point of order n + 1 
(Eq. (13)), the density of Eq. (16b) is closely related to the Stieltjes derivative of 
order n + 1, which latter is obtained from the conventional finite-difference approx- 
imation of Eqs. (14) [9]. The Tschebyscheff aproximations to the distribution and 
density converge to the appropriate correct values in the limit of large n (91. 

The Tschebyscheff density of Eq. (16b) is a rational function of E and the e,(q, E, n) 
which is nonnegative on the real axis with 2n - 2 continuous derivatives, and has 
poles in the upper and lower complex plane [9]. The locations of these poles are 
distinct from the ci(q, E, n), which latter are real and are the roots of quasi-orthogonal 
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polynomials having a fixed real root E [8]. The complex poles generally have very 
small imaginary parts when their real parts are in the discrete portion of the 
spectrum, and they apparently converge to the correct discrete frequencies on the real 
axis in the limit of large n [23]. 

Although the foregoing development focuses attention on the extraction of spectral 
information from calculated moments (Eqs. (l)-( 12)), prodecures for solution of 
Eqs. (13) and (15) generally avoid manipulations involving the spectral moments. 
Rather, so-called recurrence coeffkients for the polynomials orthogonal with respect 
to the correct generalized oscillator-strength density are generally preferred in 
computational applications [5,6]. The appropriate recurrence relations are [24J 

PA&, 9) = (1 - %(d E)P,-,(G 4) - E2P”-I(S> Pn-*(h s> ( W 

PO@, s) = 1, K,(E,q)=O, (17b) 

where a,,(q), /?Jq) are the recurrence coefficients, and the polynomials P,,(E, q) satisfy 
the orghogonality conditions 

with 

! -O” (l/&)n+m J’.(G 4 f’,,h 4) df(E, 9) = N,(q) Lm (184 
El 

N,(q) = P&)&(q) .** PA?). (18b) 

The coefficients a,(q), /3Jq) are obtained from a computationally stable procedure 
employing the expressions [ 241 

1 
an(q) = PO(q) **. Pn-l(4) i m (l/s)*“-’ Pn-1(&, 4)’ df(E, 4) (194 6, 

1 
pn(q) = PO(q) **- P,-,(s) ( O” (I/E)*’ Pn(&, q)* df(E, 4). 

E, 

When a pseudo-spectral representation of f(s, q) calculated in an L* basis 
(Eqs. (8)--( 11)) is used, the recurrence relation of Eqs. (17) is conveniently employed 
to generate the necessary polynomial values appearing in Eqs. (19) at the pseudo 
eigenvalues with considerable numerical stability. All required quantities are then 
obtained from the calculated recurrence coefficients following procedures described 
previously in considerable detail [9, 241. The major computational step involved 
entails diagonalization of the symmetric tridiagonal matrix 

I (20) 
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from which the Gaussian quadratures ei(q, n), f;:(q, n) of Eq. (13) are obtained. The 
Radau quadrature points and weights of Eq. (15) are obtained from diagonalization 
of a closely related matrix, with a,(q) in Eq. (20) replaced by 
-5 -P,-1(4)P”-,(~)/~,-l(~). 

IV. APPLICATION TO HYDROGENIC TARGETS 

Atomic hydrogen provides a useful example for investigating convergence of the 
moment-theory approach to Bethe surfaces, scattering cross sections, and correlation 
functions, and for illustrating and verifying the development described in the 
foregoing sections. The discrete and continuum portions of the generalized oscillator- 
strength spectra and corresponding moments, cross sections, and correlation 
functions are given explicitly in the preceding publication [4]. Introduction of the 
familiar Rayleigh expansion of a plane wave into the oscillator strengths and density 
gives the partial-wave contributions to the discrete and continuum portions of the 
Bethe surface in atomic hydrogen. Since these expressions are somewhat lengthy, they 
are not reproduced here. Their q + 0 limits, however, are proportional to the so-called 
multipole oscillator-strength distributions in atomic hydrogen, which can be written 
in the compact forms (261 

Elf’ = 4 [ 1 - (l/n)‘], n = 2, 3,..., (214 

al2 (n + I)! 
C’ = (21+ 1) (n - I - l)! (,$+4) 

n-l 2n 
t ) nS1’ 

n = 2, 3,..., 

8W) = &J&T [JJj (1 +j2w21] 

x exp[+/W)) tan-W))1 
1 - exp[-271/k(s)] ’ (21c) 

k(E) = (2E - l)l’2, f <E < 00. (21d) 

Equations (21) provide information useful for investigation of the principal 
pseudostate representations of Z-wave Coulomb continuum functions in atomic 
hydrogen described in subsection D below. 

A. Spectral Moments and Polynomial Recurrence Coeflcients 

Basic sets of associated Laguerre functions of order n + I+ l/21 + 2 are employed 
in variational calculations (Eqs. (8)-( 11)) of the spectral sums for atomic hydrogen 
[27]. These functions are chosen because they are L2 complete in R’ for all 1. 
Moreover, a finite number of them for given I span the space of an equal number of 
corresponding multipole Cauchy functions in atomic hydrogen [28]. Consequently, a 
variational calculation employing N such functions reproduces the first 2N of the 
multipole moments of the spectrum of Eqs. (21). 

581/49/l-6 
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TABLE I 

Variationally Determined Values of the Bethe Sum Rule 
S(q, 0) = 1 in Atomic Hydrogen” 

L\Nb 10 20 30 40 50 

4 0.99418 
9 1.oooo1 

14 1.00001 
19 1.OoOO1 
24 1.OOoO1 

q=l 

0.99417 0.99417 
l.OOoOil 1.OOOOO 
1.OOOOO 1.OOOOO 
l.OOOOO 100000 
1.OOOOO 1sMJOOO 

0.99417 
1.OOOOO 
1.OOOOO 
1.OOOOO 
1.OOOOO 

0.99417 
l.OOOOO 
1.00000 
l.OOOOO 
l.OOOOO 

4 0.9053 1 
9 0.99816 

14 1.00004 
19 1.00006 
24 1.00006 

q=2 

0.905 13 0.90513 
0.99809 0.99809 
0.99997 0.99997 
1.OOOoO 1.oOOOO 
1.OOOoO l.OOoOO 

0.90513 0.90513 
0.99809 0.99809 
0.99997 0.99997 
1.OOOOO .ooooO 
l.OOOOO 1.OOOOO 

q=3 

4 0.74158 
9 0.93 124 

14 0.93605 
19 0.93609 
24 0.93609 

0.74730 0.74730 
0.97801 0.97801 
0.99858 0.99858 
0.99992 0.99992 
1.OOOOOO l.OOOOOO 

4 0.48275 
9 0.53946 

14 0.53984 
19 0.53984 
24 0.53984 

0.74761 0.74732 
0.97813 0.97804 
0.99855 0.99860 
0.99982 0.99994 
0.99986 1.00002 

4=Fp 

0.5926 1 0.59664 
0.91240 0.92607 
0.95253 0.98817 
0.95357 0.99643 
0.95358 0.9969 1 

q=5 

0.59640 0.59639 
0.92662 0.92664 
0.98965 0.98973 
0.9986 1 0.99873 
0.9997 1 0.99985 

4 0.19825 0.45446 0.47240 0.47473 0.47517 
9 0.20539 0.71723 0.83760 0.85045 0.85243 

14 0.20540 0.72707 0.92924 0.96181 0.96637 
19 0.20540 0.72712 0.93414 0.98466 0.99211 
24 0.20540 0.72712 0.93419 0.98627 0.99695 

’ Values, in Hartree atomic units, obtained from the development of 
Eqs. (8)-( 11) employing Laguerre basis functions of order n + I + l/21 + 2 
[27 and 281. 

b Numbers of partial waves (L) and basis functions (N) employed in the 
variational calculations of Bqs. (8)-( 11). 
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Conventional procedures are used in accomplishing the diagonalizations of 
Eqs. (9), and the generalized oscillator strengths of Eq. (11) are evaluated employing 
refinements of previously described integral expressions [28,29]. The resulting 
individual partial-wave contributions (Eq. (lob)) to the sum of Eq. (8a) are found to 
converge in the expected fashion, with the moment S”‘( 1 - 2k) requiring at least k 
functions. In order to achieve convergence of the total q-dependent spectral moments, 
sufficient numbers (t) of partial waves must be included in the sum of. Eq. (8a). 
These points are illustrated in Table I, where values of the Bethe sum rule S(q, 0) = 1 
are shown as functions of L and N (Eqs. (8a) and lob)). It is seen that convergence 
for the smaller q values is generally more rapid in L than for larger q values. This is 
in accord with the shapes of the corresponding portions of the Bethe surface, which 
extend to higher energy with increasing momentum transfer, consequently requiring 
more partial waves in order to achieve spectral completeness for higher q values. 

Comparison of the lowest-energy pseudo-oscillator strengths (Eq. (11)) obtained 
from the variational calculations with the corresponding correct values indicates that 
convergence has been achieved in these cases. The higher-energy pseudo-oscillator 
strengths, of course, generally do not correspond to the correct discrete values but 
rather are associated with energies that fall in the continuum. The specific forms of 
the discrete and continuum pseudostates in atomic hydrogen obtained from the 
present calculations are discussed explicitly further below [Section IV(D)]. 

Partial-wave summations for the first live moments S(q, k), -2 < k < 2, are shown 
in Fig. 1, where it is seen that the higher angular momentum values contribute signifi- 
cantly to the Bethe sum rule for q > 1. In order to obtain a convergent Bethe sum 
S(q, 0) in this case for 0 <q < 5 a.u., more than ten partial waves are evidently 
required. The S(q, 2) and S(q, 1) sums are found to be more slowly convergent with 
L, whereas the negative moments are more rapidly convergent than is the Bethe sum 
rule in the interval 0 < q < 5 a.u. Consequently, convergent values for the moments 

MOMENTUM TRANSFER a (a.4 

FIG. 1. Spectral sums S(q, k) (2 > k ) -2) for the Bethe surface in atomic hydrogen: (-) exact 
values [4]; partial-wave summations obtained from SO-term pseudostate calculations: (---) I= O-I, 
(-.-.-) l=O-9, (-..-) 1=0-14. All values in Hartree atomic units. 
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TABLE II 

Variationally Determined Polynomial Recurrence Coefficients 
for the Bethe Surface in Atomic Hydrogen” 

k a/h = 0) a& = 1) %h7 = 2) %(q= 3) +=4) dq = 5) 

1 2.00000 1.18080 0.46875 0.22023 0.12479 0.07992 
2 1.50000 1.71328 1.33350 0.84909 0.52214 0.32204 
3 1.33333 1.49257 1.65432 1.76916 1.86021 1.92494 
4 1.25000 1.32667 1.39877 1.41963 1.42548 1.42751 
5 1.20000 1.24430 1.29169 1.30359 1.30070 1.29354 
6 1.16667 1.19534 1.22810 1.23971 1.23850 1.23174 
1 1.14286 1.16294 1.18590 1.19679 1.19782 1.19253 
8 1.12500 1.13985 1.15643 1.16568 1.16796 1.16314 
9 1.11111 1.12254 1.13498 1.14233 1.14491 1.13943 

10 1.10000 1.10907 1.11875 1.12442 1.12664 1.11975 
11 1.0909 1 1.09828 1.10603 1.11041 1.11196 1.10357 
12 1.08333 1.08944 1.09579 1.09925 1.10003 1.09092 
13 1.07692 1.08206 1.08736 1.09016 1.09023 1.08174 
14 1.07143 1.07581 1.08030 1.08261 1.08200 1.07544 
15 1.06667 1.07045 1.0743 1 1.07623 1.07492 1.07093 
16 1.06238 1.06580 1.06914 1.07077 1.06875 1.06707 
17 1.04671 1.06245 1.06454 1.06598 1.06346 1.06324 

k MT = 0) Pk(4 = 1) Pkkl = 2) P/h= 3) P!sq = 4) 

0 1 .ooooo 1 .oooooo 1.oooooo 0.999996 
1 0.5OOOOO 0.380404 0.072768 0.010486 
2 0.416667 0.530903 0.632651 0.557283 
3 0.375000 0.417494 0.471342 0.500827 
4 0.350000 0.312728 0.395660 0.414703 
5 0.333333 0.347886 0.359439 0.368472 
6 0.321429 0.331569 0.338997 0.342758 
1 0.312500 0.319964 0.325565 0.327049 
8 0.305556 0.311279 0.315777 0.316481 
9 0.300000 0.304528 0.308222 0.308751 

10 0.295455 0.299127 0.302204 0.302727 
11 0.291667 0.294706 0.297302 0.297829 
12 0.288462 0.291018 0.293236 0.293746 
13 0.285714 0.287895 0.289810 0.290292 
14 0.283333 0.285215 0.286884 0.287335 
15 0.281249 0.282891 0.284358 0.284778 
16 0.280192 0.280828 0.282162 0.282549 

- 
0.999852 
0.001921 
0.410724 
0.508921 
0.428004 
0.377192 
0.347499 
0.329345 
0.317496 
0.309247 
0.303150 
0.298389 
0.294508 
0.291270 
0.288559 
0.286290 
0.284336 

P& = 5) 
~- 

0.996946 
0.000479 
0.275934 
0.50993 I 
0.437081 
0.385353 
0.353626 
0.334036 
0.321714 
0.313775 
0.308347 
0.304094 
0.300119 
0.296035 
0.291958 
0.288255 
0.285210 

’ Values, in Hartree atomic units, obtained from the development of Eqs. (ll)-( 19) and 
variationally calculated pseudospectra of Eqs. (8t(ll) employing 50 basis functions and 
25 partial waves in each case. The correct asymptotic (k -+ co) values (Eqs. (22)) in this 
case are a, = 1, p, = l/4 for all q. 
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S(k), k = 0, -l,..., are obtained in the interval 0 <q < 5 a.u. employing 25 partial 
waves in each case. Moreover, since the higher-order negative-integer moments satisfy 
the asymptotic behaviors S(q --) co, -k) -+ (2/q’)k [30], which behavior is largely a 
consequence of the validity of the binary-encounter approximation at large q and E, 
[2] they do not have to be determined explicitly by computation for all values of 
momentum transfer. Rather, the partial-wave variational calculations are required 
only to determine the moments and corresponding recurrence coefficients for small 
and intermediate q values. 

The variationally determined pseudospectra obtained from Eqs. (9) and (11) for 
N = 50 and L = 24 are employed in conjunction with Eqs. (17)--( 19) to determine the 
corresponding polynomial recurrence coeffkients shown in Table II. Comparisons of 
these variationally determined coefficients with the corresponding correct values (not 
shown) (281 indicates convergence to many significant figures has been achieved in 
all cases but q = 4 and 5 a.u., for which two or three significant figures are obtained. 
Moreover the calculated coeffkients are seen to approach the correct asymptotic 
values [ 241 

%40(q) + a, = W~m) (22a) 
P,+,(s> -Pm = l/(4hJ2~ (22b) 

smoothly from above in every case. These values are employed in the Stielt- 
jes-Tschebyscheff development of Section III in constructing convergent approx- 
imations to the corresponding generalized oscillator-strength distribution. 

0. Bethe Surface 

In Figs. 2 and 3, we show continuum portions g(E, q) of the Bethe surface in 
atomic hydrogen for five values of momentum transfer [4]. A logarithmic abscissa is 
employed, since the large-q profiles are flat and broad, extending to very high 
excitation energy, although each curve is unity normalized (S(q, 0) = 1). In contrast 
to the profiles shown in Figs. 2 and ,3, which, as functions of logarithmic excitation 
energy, broaden with increasing fixed momentum transfer, constant-energy profiles on 
the Bethe surface regarded as functions of ln(q’) becomes sharper with increasing 
excitation energy [2]. These features are characteristic of the so-called Bethe ridge, 
which dominates the high E and q portion of the Bethe surface. 

In Fig. 2a, we show Stieltjes histogram approximations (Eqs. (13) and (14)) to the 
live spectra in atomic hydrogen for the indicated q values, constructed using 20 
negative-integer spectral moments beginning with k = 0, corresponding to the use of 
10 ak(q) and 10 p,Jq) values (Table II), in each case. Although the Stieltjes 
histograms of Fig. 2a are relatively coarse, they are in general agreement with the 
correct profiles for the low-q curves. The Stieltjes approximations to the high-q 
profiles are perhaps less satisfactory, suggesting, as might be expected, that extended 
distributions are not as well characterized by a moderate number of their negative- 
integer power moments as are more compact distributions. 
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-05 0 05 IO I.5 20 25 30 
EXCITATION ENERGY Ln (6) (a u.) 

FIG. 2. Bethe surface in atomic hydrogen; light line (-) exact values of g(a, 9) in each case ]4]; (a) 
(-) tenth-order Stieltjes histograms (Eqs. (13) and (14) for n = 10) obtained by employing 20 
calculated polynomial recurrence coefftcients [Table II J; (b) (-) Stieltjes histograms (Eqs. (13) and 
(14)) obtained by employing 34 calculated recurrence coefficients (Table II) and the extension procedure 
of Eqs. (22) and (23), as discussed in the text. All values in Hartree atomic units. 

As additional numbers of moments are employed in the Stieltjes development 
(Eqs. (13) and (14)), histograms are generated that are in increasingly good 
agreement with the correct density. Since the variationally determined spectral 
moments and associated polynomial recurrence coefftcients rapidly approach known 
asymptotic values (Eqs. (22)) with increasing order, as is Indicated explicitly in 

FIG. 3. Bethe surface in atomic hydrogen; light line (-) exact values of g(s, q) in each case 14); 
(a) (---) second-order Tschebycheff derivative obtained from Eqs. (15) and (16) for n = 2; (b) (-) 
convergent Tschebyscheff derivatives (9 = 1 to 4 a.u.) obtained from Eqs. (15) and (16) employing 34 
calculated recurrence coefficients [Table II] and the extension procedure of Eqs. (22) and (23), as 
discussed in the text. All values in Hartree atomic units. 
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Table II, it is convenient to supplement the accurately calculated values with 
additional coefficients of the forms 

a,(q) = a,(1 + 6,(4)/n + ~2(q)/n2 + **->7 GW 

Pn-*(d =Pd + r,(d/n + lJ*w~* + ***h n = 1, 2,.... Wb) 

Here, a,, P, are the correct asymptotic values of the recurrence coefficients in 
atomic hydrogen (Eqs. (22)), and the parameters ai and yi(q) are chosen 
(Table III) to reproduce the highest-order accurately calculated recurrence coef- 
ficients. The specific forms of Eqs. (23) correspond to asymptotic expansions for 
large n and are appropriate for all q values, and for all atomic and molecular 
systems. 

In Fig. 2b are shown Stieltjes histograms of various orders obtained by employing 
34 accurate spectral moments and sufficient numbers of additional asymptotic coef- 
ficients (Eqs. (22) and (23)) to obtain smooth results. For the lower-q profiles, 
-5Oth-order histograms are employed, whereas Stieltjes histograms of -90th order 
are used for the higher-q profiles. Evidently, the Stieltjes histograms so obtained are 
in good agreement with the correct values in every case, and the q = 1 and 2 results 
are essentially fully converged to smooth curves for low excitation energies. These 
results indicate that modest numbers of accurate power moments obtained from L* 
variational calculations provide fully convergent Stieltjes densities when the 
appropriate asymptotic behaviors (Eqs. (22) and (23)) of the polynomial recurrence 
coefficients are incorporated. It should be noted that this observation is not 
necessarily limited to hydrogenic targets, since Eqs. (22) and (23) are valid for 
systems of arbitrary complexity. Use of the asymptotically correct recurrence coef- 
ficients corresponds equivalently to introduction of information corresponding to 
large number of highly accurate spectral moments, which cannot be employed 
explicitly in Eq. (13) because of numerical instabilities [ 2 1, 24, 3 11. 

TABLE III 

Extension Parameters for Asymptotic Polynomial Recurrence 
Coefficients in Atomic Hydrogen’ 

4 m) 467) Y,(9) Y*(9) 

0 0.99750 0.02752 1.9999 0.00127 
1 0.98871 1.0195 1.9758 2.0533 
2 0.96776 2.1970 1.9814 3.4731 
3 0.94168 3.0186 2.0148 3.375 1 
4 0.83840 4.2865 2.1925 1.1772 
5 0.81586 3.6294 2.3703 2.2526 

’ Values, in Hartree atomic units, of the parameters 
appearing in the asymptotic polynomial recurrence coefficients 
of Eqs. (23) for the Bethe surface in atomic hydrogen. 
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The five spectral sums shown in Fig. 1 are employed in the development of 
Eqs. (15) and (16) to obtain a low-order (n = 2) Tschebyscheff-derivative approx- 
imation to the Bethe surface in atomic hydrogen. The continuum portions of the 
spectra so obtained are shown in Fig. 3a. Evidently, the very low order Tschebyscheff 
results of Eq. (16b) obtained by employing only live spectral moments are in 
qualitative accord with the correct spectra indicated in the figure. These results are of 
considerable interest in that four of the five sums employed are sum rules (Eq. (3)), 
obtained from the ground-state eigenfunction alone [ 171. 

As in the Stieltjes development of Fig. 2b, 34 variationally determined spectral 
moments for each of five q values are extended (Table III) to sufficient numbers of 
recurrence coefficients to obtain the fully convergent Tschebyscheff approximations 
for 1 < q < 4 a.u shown in Fig. 3b. It is found that a fourfold extension is required to 
obtain complete convergence in this interval, corresponding formally to the use of 
approximately 170 power moments. The moment equations need not be solved, 
however, since the recurrence coefficients are available in closed form (Eqs. (22) and 
(23)). The resulting spectra (Fig. 3b) are evidently very smooth and in excellent 
accord with the correct curves for 1 <q < 4 a.u. When additional extended 
recurrence coefficients are introduced, corresponding to an eightfold extension, the 
Tschebycheff result for the q = 5 a.u. spectrum is also convergent, within the 
accuracy of the coefficients of Table II. Use of ad hoc smoothing techniques on the 
cumulative distribution of Eq. (16a) in lower orders can also give convergent profiles, 
although it is satisfying that the Tschebycheff density can be made fully convergent 
employing the well-defined recurrence-coefficient extension procedure [24]. 

In addition to the results shown in Figs. 2 and 3, Stieltjes and Tschebyscheff 
profiles have been constructed employing various polynomial moments [28]. Approx- 
imately sixty Jacobi moments, calculated employing previously described recurrence 
techniques [21], are found to provide highly stable moment problems and convergent 
Stieltjes and Tschebyscheff approximations to the Bethe surface in atomic hydrogen 
when appropriately extended recurrence coefficients are used. Although the moment 
problem associated with the use of Jacobi moments is more stable than that 
associated with an equal number of power moments, the rate of convergence of the 
Stieltjes and Tschebyscheff approximations are found to be approximately the same 
in each case, with equal numbers of recurrence coefficients providing similarly 
reliable results. 

In Table IV we show the complex poles of the lOth-order Tschebyscheff derivative 
(Eq. (16b)) obtained by employing the coefficients of Table II for q = 1 to 5. These 
poles are evidently distributed in accordance with the general shapes of the associated 
spectra. For q = 1, they lie along an approximate ray making a relatively small angle 
with the real axis, whereas, for the larger values of q, there are high-energy poles 
parallel to the real axis in the approximate vicinity of the Bethe ridge. Moreover, use 
of only the discrete portions of the spectral moments in atomic hydrogen results in 
Tschebyscheff densities (not shown) having poles very near the real axis in the 
appropriate discrete interval. Similarly, use of the continuum portions of the spectral 
moments results in densities (not shown) having poles that fall on rays beginning at 
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the ionization threshold. In the latter case, the rate of convergence of the 
Tschebyscheff density with the number of moments employed is found to be similar 
to that obtained using the total spectral moments. These results indicate that spectral 
moments can be employed to characterize all or only a given portion of a 
corresponding generalized oscillator-strength distribution uniquely. 

C. Vun Hove Correlation Functions 

The convergence of the Bethe surface with increasing numbers of spectral moments 
indicated in the preceding subsection assures corresponding convergence of the 
associate scattering cross sections, since the integrands are smooth slowly-varying 
functions of energy over the interval of the defining distribution, and the integrals are 
evaluated using an optimal set of generalized quadratures. By contrast, determination 
of the time autocorrelation functions of atomic systems from spectral moments and 
corresponding Gaussian quadratures is much more difficult, since the integrand in 
this case is a highly oscillatory function. 

It is found in the present development that the moment-theory procedure in low 
orders gives quadrature approximations to correlation functions that are in good 
accord with the correct values over short time intervals, but which exhibit unphysical 
oscillations for longer times. Quadrature points and weights providing both upper and 
lower principal representations, corresponding to Radau quadratures having one 
point fixed at the lower and upper ends of the integration interval [8, 321, respec- 
tively, are employed in order to test the time range of mutual agreement for given 
numbers of moments [28]. It is found that the mutual agreement between upper and 
lower principal representation results (not shown) becomes poor for those times at 
which agreement with the correct values is also poor [28], providing an a priori 
method for assessing the reliability of moment approximations to time correlation 
functions. 

Although quadrature approximations to time autocorrelation functions can lead to 
unphysical long-time oscillations when small numbers of moments are employed, use 
of sufficient numbers of spectral moments insures that these effects are minimized. In 
Fig. 4, we show the real parts of time autocorrelation functions for atomic hydrogen 
obtained from the quadrature expression 

@(4, t) = (q*/2) 5 dfi(q, n)/e,(q, n)) eiai(q,n)’ 
i=l 

(24) 

employing variationally determined moments and the recurrence coefficient extension 
procedure (Eqs. (22) and (23), Tables II and III). Large numbers of moments (374), 
corresponding to a tenfold extension, are required to provide the results of Fig. 4, 
which are in excellent agreement with the correct values for q = 0 to 4 a.u. For q = 5 
a.u., however, there is a discernible difference between the correct and moment-theory 
results for t 2 0.5 a.u. This is a consequence of inaccuracies in the polynomial 
recurrence coefficients of Table II for q = 5, which, as indicated above, are accurate 
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FIG. 4. Real parts of time autocorrelation functions in atomic hydrogen normalized to t = 0 values: 
(-) correct values (41; (---) values obtained from Eq. (24) employing variationally determined 
recurrence coefficients (Table II) and the extension procedure of Eqs. (22) and (23). Values for q: (a) 0; 
(b) 1; (c) 2; (d) 3; (e) 4; (f) 5. All values in Hartree atomic units. 

to only two or three significant figures. Consequently, introduction of additional 
recurrence coefficients using the extension procedure in this case does not lead to 
agreement between the correct and moment-theory results for the autocorrelation 
function. The results of Fig. 4 indicate that use of modest numbers of accurate 
spectral moments and the extension approach of Eqs. (22) and (23) can provide 
convergent Van Hove time autocorrelation functions for atomic targets. 

It is also possible to construct separately the discrete and continuum portions of 
the Van Hove functions by employing the appropriate moments and quadratures. In 
order to accomplish this evaluation, it is necessary to partition variationally 
calculated pseudospectra into discrete and continuum contributions, as in the 
evaluation of the corresponding portions of the Bethe surface indicated above. Alter- 
natively, formulation of procedures for direct determinations of autocorrelation 
functions without reference to corresponding spectra or pseudospectra would be 
highly desirable [3], a topic beyond the scope of the present study. 

D. Principal Pseudostates 

In accordance with previous observations [33], it is anticipated that the 
pseudostates of Eqs. (9) for an arbitrary basis will generally provide L* approx- 
imations to the associated correct scattering functions at energies above the 
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ionization threshold. The correct scattering normalization is generally not obtained 
from L* variational calculations, however, and additional considerations must be 
employed to determine the complete scattering function [33]. Principal pseudostates 
obtained from the L* moment-theory development provide a general method for 
determining the correct normalization factors [ 14-161. In the case of atomic 
hydrogen, the development is particularly straightforward, since the Laguerre 
functions of order n + E + l/21 + 2 employed in the variational development provide a 
basis appropriate for determining principal pseudostates directly from the variational 
development [28]. As indicated above, N of the Laguerre functions of order 
n + I + l/21 + 2 provide a pseudospectrum (ei (I) @I’); i = 1, N) from Eqs. (9) that , 
gives directly Nth-order Gaussian quadratures in the forms 

&j” = (@j” I Ho - E, I @I’)), Pa) 

j-j’) = 2&j’) J(q) / r’P,(cos e) po>l*, i = 1, 2 ,..., N, (25b) 

corresponding to the spectrum of Eqs. (21). Because the first 2N power moments of 
the spectrum are reproduced correctly by the quadratures of Eqs. (25), the 
corresponding pseudospectrum of transition energies and eigenfunctions is designated 

FIG. 5. Dipole (I = 1) radial transition densities in atomic hydrogen over the interval 0 < r < 10 
a.“.; (-) correct results of Eq. (30) for (a) E, = -0.1247; (b) E, = -0.0215; (c)E, = 0.1834; 
(d) E, = 0.7559; (e) E, = 3.2068 [36]; (---) Sth-order principal pseudostate results of Eq. (29). The 
ordinate scales employ tick mark intervals of 0.1 au. in each case. All values in Hartree atomic units. 
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a principal representation of the spectrum, in accordance with generally accepted 
moment-theory usage [8]. 

To clarify the nature of pseudostate approximations to scattering functions, it is 
convenient to compare the l-wave multipole oscillator strengths obtained from a prin- 
cipal pseudospectrum (@I”, &I” ; i = 1, n) in l-wave symmetry with the corresponding 
correct values of Eqs. (21). The former can be written in the form 

f;” = 2&y I( @” 1 r’P,(cos e) ( #o)12 

= 2&y’ 
[r’ 

oa R;[+) R,,(~) r1+2 dr j*= jn ~~~~~~~~~~ 0) x df-21 *, (264 0 0 
with R!“(r) the radial portion of @jn, whereas the continuum density of Eq. (2 lc) is 

g”‘(E) = 2E 1($;” ) r’P,(cos l9) ( #o)12, 

= 2E R:“(r) R,,(r) r’+* j*= \” 
2 

q(B) P,(cos 0) G dL’ 1 , Wb) 
0 -0 

with R:“(r) the l-wave multipole Coulomb function [34, 351. Since the principal 
pseudostate @in is unity normalized, while @y)(r) is delta-function normalized in the 

d 
: 
: 

\r. - - 

2’ 

FIG. 6. As in Fig. 5 for hexadecapole (I= 4) densities over the interval 0 < r < 16 a.u. 
(a) E, = 0.0180; (b) E, = 0.1269; (c)E, = 0.3395; (d) E, = 0.7197; (e) E, = 2.0421. The ordinate scales 
employ tick marks of 10.Oa.u. in each case. 
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energy, the oscillator strength of Eq. (26a) is generally not equal to the density of 
Eq. (26b) evaluated at E = si . (I) The former strength (Eq. (26a)), however, can be 
made equal to the latter density (Eq. (26b)) if the pseudostate @pjn is renormalized in 
the form 

q) + jq”@j’), 

where the normalization factor IV!” is given by 

(27) 

N,!” = [ g”‘(~~‘))/fj’)] “2, c-w 

and the correct density g”‘(#)) is approximated by the Stieltjes-Tschebyscheff 
development. The latter may be constructed directly from the variationally deter- 
mined pseudospectrum, since the latter provides a principal representation of the 
correct multipole oscillator-strength distribution. Consequently, correctly normalized 
L* approximations IV!‘)@“’ to the scattering functions d’,” are obtained directly from 
the variational develdpmkt when principal pseudostates are employed. To test the 
reliability and convergence of the development, the radial densities 

p’“‘(r) = N,!“Ry(r) R,,(r) rlf2 (29) 

FIG. 7. Dipole (I= 1) radial transition densities in atomic hydrogen over the interval 
0 Q r Q 10 au.; (-) correct results of Eq. (30) for (a) Ey’ = 3.2068; (b) EIy’ = 3.2507; 
(c) E:?’ = 3.355 1; (d) E i:() = 3.1949; (e) Eg’ = 3.2902; (f) E \y’ = 3.2078; (---) principal pseudostate 
results of indicated orders obtained from Eq. (29). The ordinate scales employ tick marks of 0.1 a.u. in 
each case. All values in Hartree atomic units. 
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obtained from Eqs. (25)-(28) are compared with the corresponding correct densities 

p”‘(r) = R;“(r) R,,(r) r/+2, E = E!l) I 3 (30) 

for a considerable range of values of I and a great many principal pseudospectra in 
atomic hydrogen [28]. 

In Figs. 5 and 6, we show as examples the densities of Eq. (29) for I= 1 and 4, 
respectively, obained from Sth-order principal pseudospectra, in comparison with the 
correct corresponding results of Eq. (30) [36]. Although only five principal 
pseudostates are used in each case, it is seen that the spectra are uniformly spanned 
and that the L* results are in generally good agreement with the correct values. 
Because the second principal pseudostate in the I = 1 case is higher lying than the 
correct 3p state, the corresponding radial densities are in poor accord in this case. 
This is to be expected, since the second principal pseudostate represents also the 
higher-lying discrete 1s -+ np transitions, which contribute nonnegligibly to the 
spectrum. By contrast, in the I= 4 case, only the continuous portion contributes 
substantially to the correct spectrum, and, consequently, the Sth-order principal 
pseudostates all fall above threshold. It is seen that the highest-lying result in each 
case is in poorest agreement with the corresponding correct values. Clearly, 

FIG. 8. As in Fig. 7 for hexadecapole (I= 4) densities over the interval 0 < r < 16 a.u. 
(a) I$” = 3.2688; (b) E\\“’ = 3.1497; (c) E:y’ = 3.2301; (d) E:y) = 3.3022; (e) I$:’ = 3.2019; 
(f?E,o-. . ‘W - 3 1389 The ordinate scales employ tick marks of 10.0 a.u. in each case. 
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additional functions, corresponding to higher-order principal pseudospectra, are 
required to achieve convergence to the higher-lying continuum states. 

In Figs. 7 and 8, we show the results of Eq. (29) as functions of increasing order 
for I = 1 and 4, respectively, obtained at energies corresponding approximately to the 
position of the highest-lying principal pseudostate of Fig. 5. It is seen that as the 
order of the principal pseudospectrum, or the number of basis functions employed, is 
increased, the corresponding radial densities converge smoothly to the correct results. 
Similarly good convergence is also obtained at lower energies and other I values. At 
higher energies, additional numbers of functions are required to achieve convergence, 
since the correct scattering functions and transition densities become highly 
oscillatory. It is important to note in this connection that principal pseudostates of 
any order are always distributed over the important or spectrally dense portions of 

12 4 6 8 10 2 4 6 

RADIAL DISTANCE r (a.u.1 

FIG. 9. Dipole (I= 1) radial transition densities in atomic hydrogen over the interval 
0 <r-Q 10 au.; (-) correct results of Eq. (30) for (a) l?, = -0.1250; (b) 3, = -0.0556; 
(c) E3 = -0.0311; (d) J??~ = -0.0154; (e) 2, = 0.00621; (f) 6, = 0.0367; (g) %, = 0.0776; 
(h) E_s = 0.1312; (i) l?Y = 0.2011; Cj) I?,, = 0.2930; (k) I?,, = 0.4153; (I) ,??,2 = 0.5811; (m) I?,, = 0.8122; 
(n)E,, = 1.146; (o)E,, = 1.652; (p),!?,, = 2.468; (q) g,, = 3.908; (r),??,, = 6.815; (s)/?,~ = 14.15; 
(t) E,, = 43.54. (---) 20th.order principal pseudostate results of Eq. (29). Ordinate scale intervals 
correspond to 0.01 au. for the first four figures, 0.05 au. for the remaining figures. All values in Hartree 
atomic units. 
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the corresponding spectrum as a consequence of satisfying the appropriate moment 
equations. 

In Fig. 9, we show the results of Eqs. (29) and (30) for I= 1 obtained from a 
2Oth-order principal pseudospectrum. Evidently, 12 of the 20 states obtained fall 
within -15 eV of threshold, in which region the major portion of the dipole (I = 1) 
oscillator strength is found. Moreover, even the higher-lying results are in good 
agreement with the correct values, although the highly oscillatory behaviors of the 
last few densities are not satisfactorily reproduced. At these very high energies, 
however, the corresponding Coulomb functions are well represented by their simple 
analytic asymptotic forms, and detailed computations are somewhat irrelevant in any 
event [34,35]. 

V. CONCLUDING REMARKS 

Theoretical studies of high-energy inelastic electron scattering cross sections and 
related quantities generally entail construction, in some approximation, of the discrete 
and continuum excited eigenstates of the target atom or molecule. The procedures 
described here provide a means for avoiding the customary eigenstates, but 
nevertheless give all the information obtained from the conventional approaches. 
Square-integrable basis functions and partial-wave expansions are seen to be 
sufficient for determinations of appropriate spectral moments and related polynomial 
recurrence coefficients. Convergent approximations to the associated Bethe surface 
are obtained from these and the Stieltjes-Tschebyscheff technique when the important 
extension procedure is used in the construction of a complete set of polynomial 
recurrence coefficients for atomic hydrogen. These results suggest that a similar 
approach, in which finite L2 basis-set calculations are supplemented with appropriate 
asymptotic information, can be employed in moment-theory investigations of the 
Bethe surfaces of more complex atomic and molecular targets. 

The Van Hove time autocorrelation functions in atomic hydrogen are seen to 
involve oscillating integrands and spectral distributions that extend to high energy. 
Consequently, quadrature determinations are expected to be slowly convergent. 
Nevertheless, it is seen that the Stieltjes-Tschebyscheff technique provides fully 
convergent values when the previously described polynomial recurrence coefficient 
extension procedure is employed. As an alternative to the development reported here, 
in which the correlation functions are determined from moments of the known 
spectral distribution, it is of considerable interest to investigate direct determinations 
of Van Hove correlation functions employing semiclassical and related approx- 
imations and subsequent Fourier inversion to determine corresponding spectral 
distributions. 

In further clarification of the moment-theory approach to inelastic scattering cross 
sections, and of the basis of its reliability, comparisons are made of the correct and 
L2 approximations to scattering functions associated with the continuous spectrum in 
atomic hydrogen. It is seen that previously defined principal pseudostates provide 

581/49/l-7 
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excellent approximations, including the correct normalization, to radial transition 
densities derived from the regular Coulomb waves evaluated at corresponding 
energies. This suggests that the ultimate basis for the reliability of the moment-theory 
approach to high-energy inelastic scattering cross sections is to be found in L* 
variational calculations of the appropriate excitation/ionization spectra. Because the 
approach can employ the conventional technology of L2 basis-set calculations, it is 
anticipated that the Stieltjes-Tschebyscheff technique will be particularly useful for 
studies of the Bethe surfaces and related cross sections of molecular targets [37]. 
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